NIF Capsule Sensitivity to Drive Asymmetry S. Pollaine, P. Amendt, S. Haan, M. Herrmann, O. Jones, L. Suter December 18, 2003 Inertial Fusion Sciences & Applications 2003 Monterey, CA, United States September 7, 2003 through September 12, 2003 # **Disclaimer** This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. # NIF CAPSULE SENSITIVITY TO DRIVE ASYMMETRY S. Pollaine, P. Amendt, S. Haan, M. Herrmann, O. Jones, L. Suter Lawrence Livermore National Laboratory 7000 East Avenue; Post Office Box 808, L-30 Livermore, CA 94551-0808 pollaine@llnl.gov We examine 300 eV ICF capsules with ablators of Ge-doped CH, and consider the 2-D parameter space of ablator thickness and DT-ice thickness. At each point in this parameter space, we optimize the drive for a low entropy implosion. At five points in this parameter space, we run 2-D sensitivity studies with radiation drive asymmetries with both constant and time-varying Legendre coefficient P₂, P₄, P₆, and P₈ to determine how much asymmetry the capsule can tolerate before the yield degrades substantially. We find that the thinner capsules with higher implosion velocities are more tolerant of drive asymetries. # I. INTRODUCTION Proposed NIF ICF capsules are sensitive to asymmetries resulting from radiation drive and capsule imperfections. Capsule imperfections are amplified by the Rayleigh-Taylor and Richtmeyer-Meshkoff instabilities, and pose a risk at mode numbers up to about 100. Radiation drive asymmetries are also amplified by these hydrodynamic instabilities, and pose a danger at modes below 10. Previous work has mostly concentrated on quantifying the sensitivity to capsule imperfections¹. Here we concentrate on characterizing the sensitivity to drive asymmetries. We examine 300 eV ICF capsules with ablators of polyimide and Ge-doped CH. This capsule has a 2-D parameter space of ablator thickness and DT-ice thickness. At each point in this parameter space, we optimize the drive for a low entropy implosion. At five points in this parameter space, we run 2-D sensitivity studies with radiation drive asymmetries of constant Legendre coefficient P2, P4, P6, P8, as well as -P2 through -P8, to determine how much asymmetry the capsule can tolerate before the yield degrades substantially. We also examined the effect of time-varying asymmetry on the 85 eV foot and at the peak of the drive. This exercise gives us contours of capsule sensitivity to drive asymmetry. When combined with contours of sensitivity to the Rayleigh-Taylor instability, we can choose the capsule dimensions that optimize overall robustness. This information will help determine which capsule and ablator we choose for our NIF ignition capsule. ### II. RESULTS Figure 1 shows the parameter space of ablator and DT ice thickness, with contours of peak implosion velocity and yield. We picked five points in this parameter space for further study, with ablator/ice thicknesses of 150/80, 150/105, 160/90, 175/80 and 175/105 µm. Each capsule has an optimized drive that keeps the fuel on a low adiabat. We drove each capsule with a constant asymmetrical flux, increasing the asymmetry until the capsule failed to ignite. In each case, the asymmetry had the form of one of the Legendre polynomials P2, P4, P6 and P₈. Figure 2 and Table I below show the location of the half-yield failure point for the 5 capsules. Figure 3 shows the same data, but plotted vs. peak implosion velocity, defined by the square root of twice the maximum kinetic energy of the fuel divided by the fuel mass. Note that the sensitivity is largely a function of implosion velocity. This is because a higher implosion velocity increases the margin for ignition, allowing the capsule to tolerate a greater distortion of the fuel at ignition time. Figure 4 show contours of fuel density close to the time of peak fuel density for the case when the asymmetry is big ¹ S.W. Haan, T. Dittrich, G. Strobel, S. Hatchett, D. Hinkel, M. Marinak, D. Munro, O. Jones, S. Pollaine, and L. Suter, "Update on ignition target fabrication specifications," *Fusion Science and Technology* **41**, 164 (2002). enough to reduce the yield by about 50%, for the case of both positive and negative Legendre coefficients. Note that for P_2 , the jets correspond to maxima of the drive, whereas for P_4 , P_6 and P_8 , the jets correspond to the minima of the drive. Figure 1. Parameter space of fuel thickness vs. ablator thickness, with 5 marked points studied in this paper. Contour lines are of peak implosion velocity, with higher values to lower left, and shaded regions are contours of yield, with higher values to upper left. Table I: Maximum constant-asymmetry amplitude tolerated by capsule (%), and implosion velocity (km/s). Fuel and ablator thicknesses are in µm | Ablator | 150 | 150 | 160 | 175 | 175 | |-----------------------------|-----|------|------|------|------| | Fuel | 80 | 105 | 90 | 80 | 105 | | $\mathbf{V}_{\mathrm{imp}}$ | 397 | 358 | 361 | 345 | 320 | | \mathbf{P}_2 | 3.2 | 2.85 | 2.7 | 2.2 | 1.72 | | -P ₂ | 4.0 | 3.5 | 3.0 | 2.4 | 1.9 | | $\mathbf{P_4}$ | 3.5 | 3.2 | 2.6 | 2.3 | 0.6 | | -P ₄ | 2.9 | 1.9 | 2.5 | 1.3 | 0.3 | | P_6 | 1.4 | 0.7 | 0.75 | 0.55 | 0.2 | | -P ₆ | 1.1 | 0.7 | 0.7 | 0.55 | 0.2 | | P_8 | 1.7 | 0.5 | 0.9 | 0.6 | 0.11 | | -P ₈ | 1.0 | 0.45 | 1.5 | 0.8 | 0.09 | Figure 2. Location of half-yield cliff(%) for each of the 5 capsules for modes 2,4,6 and 8. Positive modes are solid, negative modes are dashed. Figure 3. Location of half-yield cliff(%) for modes P_2 through P_8 (positive modes are solid, negative modes are dashed) as a function of peak implosion velocity. Figure 4 Density contours at time of peak density for 160/90 capsule. Top row, P₂, P₄, P₆ and P₈; bottom row, the negative modes -P₂, -P₄, -P₆ and -P₈. We also ran capsules with time-varying asymmetries. For each of the five capsules, we applied a square pulse of 40% P₂ between 3 and 5 ns, followed by a square pulse of -40% P₂ between 5 and 7 ns, in order to test the sensitivity of the capsule to time-varying asymmetry on the foot, which lasts for about 9 ns. In all five cases, the capsule gave full yield. We did the same asymmetry perturbation at the time of peak drive, with a 1 ns square pulse followed by a 1 ns negative square pulse. The capsules are much more sensitive at this time, when the capsules are accelerating to their peak velocity. Table II below summarizes the location of the halfvield cliff for the five capsules, while Table III summarizes the location of the cliff for the capsule 160/90 for P₂, P₄, P₆ and P₈. ### III. CONCLUSION We examined five points in ablator thickness – fuel thickness parameter space for Ge-doped CH ablator ICF capsules. The thinner capsules with higher implosion velocity are more tolerant of drive asymmetries. Constant asymmetries of P_2 and P_4 cause the capsule to fail when the amplitudes exceed about 3%, while constant asymmetries of P_6 and P_8 cause the capsule to fail when the amplitudes exceed about 1%. Time-varying asymmetries on the foot of the drive have almost no effect, but variations at the time of peak drive will prevent ignition if the peak-to-peak amplitude swing of P_2 , P_4 , P_6 , and P_8 exceeds 36%, 50%, 16% and 5%, respectively. Table III: Location of half-yield cliff for capsule 160/90 for both foot and peak of drive for time-dependent P₂, P₄, P₆ and P₈ | Mode | P_2 | P_4 | P_6 | P_8 | |------|-------|-------|-------|-------| | Foot | >40% | >40% | >40% | >40% | | Peak | 18% | 25% | 8% | ~2.5% | Table II: Location of half-yield cliff for the five capsules for time-dependent P_2 and P_4 at peak drive, and imtedependent P_2 on the foot of the drive | Time | mode | 150/80 | 150/105 | 160/90 | 175/80 | 175/105 | |------|----------------|--------|---------|--------|--------|---------| | Foot | P_2 | >40% | >40% | >40% | >40% | >40% | | Peak | P ₂ | 16% | 10.8% | 18% | 18% | 16.7% | | Peak | P ₄ | 26% | 16.5% | 25% | 25% | 14% | This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.